Leishmania major pteridine reductase 1 belongs to the short chain dehydrogenase family: stereochemical and kinetic evidence.

نویسندگان

  • J Luba
  • B Nare
  • P H Liang
  • K S Anderson
  • S M Beverley
  • L W Hardy
چکیده

Pteridine reductase 1 (PTR1) is a novel broad spectrum enzyme of pterin and folate metabolism in the protozoan parasite Leishmania. Overexpression of PTR1 confers methotrexate resistance to these protozoa, arising from the enzyme's ability to reduce dihydrofolate and its relative insensitivity to methotrexate. The kinetic mechanism and stereochemical course for the catalyzed reaction confirm PTR1's membership within the short chain dehydrogenase/reductase (SDR) family. With folate as a substrate, PTR1 catalyzes two rounds of reduction, yielding 5,6,7, 8-tetrahydrofolate and oxidizing 2 equiv of NADPH. Dihydrofolate accumulates transiently during folate reduction and is both a substrate and an inhibitor of PTR1. PTR1 transfers the pro-S hydride of NADPH to carbon 6 on the si face of dihydrofolate, producing the same stereoisomer of THF as does dihydrofolate reductase. Product inhibition and isotope partitioning studies support an ordered ternary complex mechanism, with NADPH binding first and NADP+ dissociating after the reduced pteridine. Identical kinetic mechanisms and NAD(P)H hydride chirality preferences are seen with other SDRs. An observed tritium effect upon V/K for reduction of dihydrofolate arising from isotopic substitution of the transferred hydride was suppressed at a high concentration of dihydrofolate, consistent with a steady-state ordered kinetic mechanism. Interestingly, half of the binary enzyme-NADPH complex appears to be incapable of rapid turnover. Fluorescence quenching results also indicate the existence of a nonproductive binary enzyme-dihydrofolate complex. The nonproductive complexes observed between PTR1 and its substrates are unique among members of the SDR family and may provide leads for developing antileishmanial therapeutics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major.

Trypanosomatid protozoans depend upon exogenous sources of pteridines (pterins or folates) for growth. A broad spectrum pteridine reductase (PTR1) was recently identified in Leishmania major, whose sequence places it in the short chain alcohol dehydrogenase protein family although its enzymatic activities resemble dihydrofolate reductases. The properties of PTR1 suggested a role in essential pt...

متن کامل

Studies of Leishmania major Pteridine Reductase 1, a Novel Short Chain Dehydrogenase

Pteridine reductase 1 (PTR1) is an NADPH dependent reductase that catalyzes the reduction of several pterins and folates. The gene encoding this enzyme was originally identified in Leishmania based on its abilty to provide resistance to the drug methotrexate (MTX). The DNA and amno acid sequences are known , and overproducing strains of Escherichia coli are available. PTR1 has been previously s...

متن کامل

Molecular Cloning, Expression and Enzymatic Assay of Pteridine Reductase 1 from Iranian Lizard Leishmania

Background: Currently, there are no effective vaccines against leishmaniasis, and treatment using pentavalent antimonial drugs is occasionally effective and often toxic for patients. The PTR1 enzyme, which causes antifolate drug resistance in Leishmania parasites encoded by gene pteridine reductase 1 (ptr1). Since Leishmania lacks pteridine and folate metabolism, it cannot synthesize the pterid...

متن کامل

New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity.

Leishmania and other trypanosomatid protozoa require reduced pteridines (pterins and folates) for growth, suggesting that inhibition of these pathways could be targeted for effective chemotherapy. This goal has not yet been realized, indicating that pteridine metabolism may be unusual in this lower eukaryote. We have investigated this possibility using both wild type and laboratory-selected ant...

متن کامل

Regulation of differentiation to the infective stage of the protozoan parasite Leishmania major by tetrahydrobiopterin.

A critical step in the infectious cycle of Leishmania is the differentiation of parasites within the sand fly vector to the highly infective metacyclic promastigote stage. Here, we establish tetrahydrobiopterin (H4B) levels as an important factor controlling the extent of metacyclogenesis. H4B levels decline substantially during normal development, and genetic or nutritional manipulations showe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 37 12  شماره 

صفحات  -

تاریخ انتشار 1998